Časopis 112 ROČNÍK XXIII ČÍSLO 1/2024
Ve čtvrtek 27. dubna 2023 byl oznámen požár v areálu společnosti KOVOŠROT GROUP CZ, s. r. o, v Kladně. Vznikl ve středu plochy skladovaných vraků ve výšce 10 m. Rychle se šířil i do spodní části hromady a vyvíjel vysoké množství toxických zplodin hoření i sálavé teplo. Na místě bylo skladováno asi 5 000 t autovraků. V říjnu se v MSK uskutečnilo mezinárodní cvičení CZECH MODEX 2023 v rámci Mechanismu civilní ochrany Unie za účasti zahraničních modulů, jejichž aktivity jsou spojeny s povodněmi a jsou zaměřeny na vysokokapacitní čerpání vody. V Jeseníku proběhla závěrečná konference projektu „Společné řešení krizového řízení a spolupráce bezpečnostních složek v rámci uprchlické vlny osob z Ukrajiny na česko-polské hranici“, který se realizuje v rámci programu Interreg V-A Česká republika – Polsko. HZS JČK a MSK v rámci preventivně výchovné činnosti využívá trojrozměrné vzdělávací prostředí. Jeho zapojení do přípravy obyvatelstva cílí na mladou generaci.
- OBSAH č. 1/2024 ROČNÍKU XXIII
- CVIČENÍ CZECH MODEX 2023
- POŽÁRY, U KTERÝCH BÝT ZKRÁTKA NECHCETE
- RAMANOVA A INFRAČERVENÁ SPEKTROMETRIE U HZS ČR
- TOXICITA ZPLODIN HOŘENÍ FASÁDNÍCH IZOLANTŮ
Metodami pro identifikaci neznámých látek, které používají chemické laboratoře Hasičského záchranného sboru České republiky (HZS ČR) nejčastěji, jsou Ramanova a infračervená (IČ) spektrometrie. Historie Ramanovy spektrometrie sahá až do 30. let minulého století, kdy indický vědec C. V. Raman dostal za výsledky svojí práce při studiu rozptylu světla v roce 1930 Nobelovu cenu (1) .
Jev, při němž se vedle emise fluorescenčního záření o nižší frekvenci objevuje i emise krátkovlnného záření, předpověděl A. Smekal (1923) a jeho experimentální nález nejdříve ohlásil C. V. Raman. Proto se označuje jako Smekalův-Ramanův jev (2). Principem je měření rozptýleného záření, které vzniká interakcí monochromatického záření z oblasti viditelné až blízké infračervené s molekulami vzorku za současné změny jejich vibračních a rotačních stavů (3).
Ramanovo spektrum polypropylenu porovnané se spektrem uloženým v knihovně
Ramanovy spektrometry dokáží identifikovat pevné a kapalné vzorky, gely, kaly, pastovité hmoty aj., jejichž molekuly jsou spojeny kovalentními nebo polárně kovalentními vazbami. Je možné identifikovat bojové chemické látky, široké spektrum organických i anorganických látek, toxických průmyslových škodlivin, výbušnin, drog atd. Podmínkou je přítomnost Ramanova spektra v knihovně spekter. Ramanovy spektrometry nejsou schopny identifikovat biatomové molekuly s iontovými nebo iontově polárními vazbami (např. chlorid sodný), kovy, většinu nekovových prvků, vodu, bílkoviny, vysoce fluoreskující sloučeniny, B-agens a plyny (4).
Moderní Ramanovy spektrometry již zvládnou identifikovat i fluoreskující látky. Tento problém, který se vyskytoval u prvních přenosných přístrojů, které byly v ČR v roce 2007 používány, byl vyřešen použitím laseru o vlnové délce 785 nebo 1 064 nm.
Doplňkovou metodou pro Ramanovu spektrometrii je IČ spektrometrie. První zmínky o IČ spektrometrii nacházíme na počátku 19. století. Její první aplikace jsou z 20. století, kdy se začínají rozvíjet další metody využívající i jiné vlnové délky (5). Technika, která se osvědčila u IČ, je založena na absorpci IČ záření molekulami látek a umožňuje identifikovat organické i anorganické sloučeniny. Vžilo se pro ni označení FTIR (Fourierova transformace).
Roztříděné chemikálie v domácí laboratoři
Budoucnost v odvětví Ramanovy a IČ spektroskopie
Aktuální příslib do budoucnosti vykazuje povrchem zesílený Ramanův rozptyl (SERS), vyznačující se tím, že dokáže podle jedné molekuly identifikovat látku ulpělou na zkoumaném povrchu. Jde tedy o velice citlivou metodu, kterou se budou vývojáři daných přístrojů stále snažit vylepšovat. SERS má nevýhodu v tom, že se zatím nenašlo žádné důležité praktické uplatnění této techniky. Na obzoru je však využití, které by pro populaci mohlo být v budoucnu poměrně zásadní, a to identifikace mikroplastů (částice menší než 1 µm). Ty přitahují velkou pozornost, protože mají potenciál stát se polutantem životního prostředí. Největším problémem v identifikaci mikroplastů je právě jejich velikost. Význam metody SERS spočívá v tom, že k identifikaci látky stačí pouhá jedna molekula (6) (7).
Co se týče IČ spektroskopie, tak i zde je aktuální problematika mikroplastů. IČ mikroskopie s Fourierovou transformací se používá k identifikaci a kvantifikaci mikroplastů nejčastěji. Za poslední dobu se totiž velice vyvinula technika micro-FTIR (µ-FTIR), která umožňuje automatické stanovení mikroplastů na filtrační membráně bez předchozí úpravy vzorku (8).
V předchozích dvou odstavcích je popsán vývoj spíše pro environmentální chemii, ale je vidět trend, kterým se obě techniky chtějí posouvat i v aplikacích, které mají identifikovat potenciálně nebezpečnou látku pro populaci. Aktuálně se výrobci snaží své přístroje zmenšovat, aby je bylo možné použít nejen v terénu, ale hlavně je připravit na připevnění k robotickému systému. Dále se klade důraz na to, aby přístroje byly schopné identifikovat i látky, které jsou na místě zásahu v minimálním množství. S tím souvisí také zkrácení doby měření a zvýšení robustnosti měření. Moderní trend již také umožňuje měření v určité vzdálenosti od vzorku tak, aby operátor nemusel být se vzorkem v přímém styku. Vývoj v oblasti Ramanových nebo FTIR spektrometrů je také úzce spjat s vývojem stále výkonnějších a zmenšujících se počítačů. Důležitá je i neustálá aktualizace knihoven spekter, protože jsou stále objevovány nové látky, popřípadě deriváty látek, které mohou být potenciálně nebezpečné pro člověka.
Praktické měření
Měřené látky mohou být v kapalném i v pevném stavu a mohou být měřeny i skrze obaly. V mobilní chemické laboratoři Institutu ochrany obyvatelstva (IOO) je již možnost měřit FTIR spektrum v plynném stavu. Důležitý je i výsledek, který na základě měření nenajde žádnou shodu s knihovnou a který nás může dovést k závěru, že zkoumaná látka není toxická chemikálie. Abychom tak ale mohli usoudit, je nutné zvážit i další vlastnosti látky.
V praxi jsou FTIR a Ramanovy spektrometry velice užívanými přístroji jak v terénu, tak i při laboratorní analýze. V minulosti byly využity například k porovnání hasebního produktu se složením uvedeným v jeho bezpečnostním listu. Obě techniky dokáží odhalit i typ pigmentu přidávaný pro zabarvení dané látky.
Dále je možné rozpoznat, z kterého materiálu se skládá ohořelý vzorek odebraný z místa požáru. To je důležité pro vyšetřovatele příčin vzniku požárů, kteří tak mohou potvrdit, případně vyvrátit teorii o vzniku a šíření požáru. Napomáhá zde například možnost rozeznání původu daného plastu, jestli jde o polypropylen nebo polyethylen.
Vyhodnocovací programy daných přístrojů dokáží již eliminovat ze spekter i vodu, proto není potřeba mít vzorek úplně zbavený vody. Je tedy možné identifikovat i sraženiny vznikající v průběhu hašení chemickou reakcí. Příkladem je identifikace zelené sraženiny, která vznikla v průběhu hašení průmyslové haly, kde byly uskladněny chemikálie určené k čištění IBC kontejnerů.
Spektrometry byly nejvíce využity při identifikaci látek v domácí laboratoři, kde se vyráběly výbušniny. V kombinaci Ramanova a IČ spektrometru bylo možné přímo na místě zásahu identifikovat přibližně 100 látek, které byly většinou hořlavé, popřípadě byly prekurzorem výbušnin. Díky ochrannému mechanismu přístrojů mohla měření probíhat bez starosti z iniciace požáru nebo výbuchu.
S aktuálním vybavením je laboratoř IOO schopná také na místě zásahu během pár sekund určit přesnou koncentraci látek CBD a THC v rostlině marihuany. Z poměru těchto koncentrací lze určit, zda jde o marihuanu určenou k lékařskému využití. Měření probíhá bez jakékoli úpravy vzorku a měří se v blízké IČ oblasti (NIR) spektra.
Rozdíly v měření
Každý systém je dodaný od jiného výrobce, proto i vyhodnocovací a měřicí softwary jsou různé. Největší rozdíl je v tom, že Ramanovo spektrum lze změřit ve vzdálenosti až dvou metrů od vzorku, tudíž není nutné se ke vzorku přiblížit a být s ním v přímém kontaktu. Ramanův spektrometr a NIR spektrometr dokáží měřit skrze původní obal vzorku. Ramanův spektrometr dokáže změřit spektrum skrze průhledné a tmavé sklo, kdežto NIR spektrometr pouze skrze průhledné sklo. IČ spektrometr dokáže měřit pouze v přímém kontaktu se vzorkem, má ale výhodu v tom, že jako jediný ze zmíněných přístrojů dokáže měřit látky v plynném stavu.
Jelikož každé spektrum je měřeno jinou analytickou metodou, je zřejmé, že se spektra z jednotlivých přístrojů budou lišit. Laboratoř IOO však uvažuje o zakoupení programu, který dokáže spojit informace z rozdílných přístrojů a analytických metod. Program poté vyhodnotí všechny dodané informace a identifikuje neznámou látku.
pplk. Ing. Petra LOČÁRKOVÁ, kpt. Ing. Michal KRYKORKA, Institut ochrany obyvatelstva, foto archiv autorů
Seznam použitých zdrojů
1. Chandrasekhara Venkata Raman. Wikipedie. [online] [citace: 9. 3. 2023]. Dostupné z: https://cs.wikipedia.org/wiki/Chandrasekhara_Venkata_Raman.
2. Brdička R., Dvořák J., Základy fysikální chemie. Praha: Academia Praha, 1977.
3. Klouda P., Moderní analytické metody. Pardubice: VŠCHT Pardubice, 2016.
4. Čapoun T., Matějka J., Ramanův spektrometr. [Časopis] Praha: 112, 2007.
5. Blízká infračervená spektroskopie. Wikipedie. [online] [citace: 11. 5. 2023]. Dostupné z: https://cs.wikipedia.org/wiki/Bl%C3%ADzk%C3%A1_infra%C4%8Derven%C3%A1_spektroskopie.
6. Perez-Jiménez A. I., Lyu D., Lu Z., Liu G., Ren B., Surface-enchanced Raman spectroscopy: benefits, trade-offs and future developments. Chemical Science. 11, 2020, DOI:10.1039/d0sc00809e.
7. Mogha N. K., Shin D., Nanoplastic detection with surface enchanced Raman spectroscopy: Present and future. Trends in Analytical Chemistry. 158, 2023, Dostupné z: https://doi.org/10.1016/j.trac.2022.116885.
8. Chen Y., Wen D., Pei J., Fei Y., Zhang D. O. H., Luo Y., Identification and quantification of microplastics using Fourier-transform infrared spectroscopy: Current status and future prospects. Enviromental Science and Health. 18, 2020. Dostupné z: https://doi.org/10.1016/j.coesh.2020.05.004.